On a Generalized Wilson Functional Equation
نویسندگان
چکیده
منابع مشابه
On a Generalized Dhombres Functional Equation Ii
We consider the functional equation f(xf(x)) = φ(f(x)) where φ : J → J is a given increasing homeomorphism of an open interval J ⊂ (0,∞) and f : (0,∞) → J is an unknown continuous function. In a previous paper we proved that no continuous solution can cross the line y = p where p is a fixed point of φ, with a possible exception for p = 1. The range of any non-constant continuous solution is an ...
متن کاملStability of generalized QCA-functional equation in P-Banach spaces
In this paper, we investigate the generalizedHyers-Ulam-Rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{Z}-{0,pm1}$) in $p-$Banach spaces.
متن کاملGeneralized hyperstability of the cubic functional equation in ultrametric spaces
In this paper, we present the generalized hyperstability results of cubic functional equation in ultrametric Banach spaces using the fixed point method.
متن کاملOn the Stability of a Generalized Cubic Functional Equation
In this paper, we obtain the general solution of a generalized cubic functional equation, the Hyers-Ulam-Rassias stability, and the stability by using the alternative fixed point for a generalized cubic functional equation
متن کاملOn Approximate Solutions of the Generalized Radical Cubic Functional Equation in Quasi-$beta$-Banach Spaces
In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the generalized radical cubic functional equation[ fleft( sqrt[3]{ax^3 + by^3}right)=af(x) + bf(y),] where $a,b in mathbb{R}_+$ are fixed positive real numbers, by using direct method in quasi-$beta$-Banach spaces. Moreover, we use subadditive functions to investigate stability of the generaliz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: gmj
سال: 2005
ISSN: 1572-9176,1072-947X
DOI: 10.1515/gmj.2005.595